Эндокринолог

Совет врача по ГИПОТАЛАМИЧЕСКАЯ РЕГУЛЯЦИЯ. ГИПОФИЗОТРОПНЫЕ ГОРМОНЫ Ч1

Главная » Советы » Статьи по эндокринологии

ГИПОТАЛАМИЧЕСКАЯ РЕГУЛЯЦИЯ. ГИПОФИЗОТРОПНЫЕ ГОРМОНЫ Ч1

ГИПОТАЛАМИЧЕСКАЯ РЕГУЛЯЦИЯ

ГИПОФИЗОТРОПНЫЕ ГОРМОНЫ

Гипоталамус является той областью ЦНС, которая посредством нейротрансмиттеров, гипоталамических, гипофизотропных гормонов, а также симпатической и парасимпатической частей вегетативной нервной системы интегративно регулирует функциональную активность гипофиза и периферических эндокринных желез.

Известные в настоящее время гипофизотропные гормоны гипоталамуса делятся на гормоны, усиливающие (высвобождающие, рилизинг-гормоны) и угнетающие (ингибирующие) секрецию и высвобождение (выделение) соответствующих тропных гормонов передней доли гипофиза. Комиссия по биохимической номенклатуре Международного общества чистой и прикладной химии Международного биохимического общества (1974 г.) рекомендовала принять окончание “либерин” в названиях гормонов гипоталамуса, усиливающих высвобождение соответствующих тропных гормонов гипофиза (например, кортиколиберин), и окончание “статин” в названиях гормонов с ингибирующим эффектом (например, соматостатин).

Установлено существование следующих гипофизотропных гормонов:
1) гормон, высвобождающий лютеинизирующий и фолликулостимулирующий гормоны – гонадолиберин (люлиберин);
2) кортикотропин-рилизинг-гормон кортиколиберин;
3) соматотропин-рилизинг-гормон – соматолиберин;
4) гормон, угнетающий высвобождение гормона роста – соматостатин;
5) пролактин-рилизинг-гормон – пролактолиберин, функцию которого выполняют, вероятно, тиролиберин и ВИП;
6) гормон, угнетающий высвобождение пролактина – пролактостатин, роль которого выполняет дофамин;
7) тиротропин-рилизинг-гормон – тиролиберин;
8) гормон, высвобождающий меланоцитостимулирующий гормон – меланолиберин;
9) гормон, угнетающий высвобождение меланоцитостимулирующего гормона – меланостатин.
Существование двух последних гормонов у человека окончательно не доказано.

Гипофизотропные гормоны секретируются нейронами, локализованными в различных областях гипоталамуса. Так, паравентрикулярное ядро гипоталамуса содержит большое количество нейронов, секретирующих тиролиберин и кортиколиберин; дугообразное (аркуатное) ядро содержит нейроны, секретирующие соматолиберин и пролактостатин (дофамин); нейроны, секретирующие соматостатин, располагаются в передней гипоталамической области, а гонадолиберин – в предоптической области. Аксоны перечисленных нейронов заканчиваются в области срединного возвышения гипоталамуса, где начинается портальная система гипофиза, c помощью которой гипоталамус сообщается с передней долей гипофиза. Перечисленные химические медиаторы (гипофизотропные гормоны, моноамины), относящиеся к малым пептидам и биогенным аминам, высвобождаются из гипоталамических нейронов в систему портального кровообращения и, достигая клеток аденогипофиза, модулируют их специфическую активность. Установлено, что нервные терминали (аксоны) нейронов гипоталамуса имеют здесь тесные контакты с первичным капиллярным сплетением, где и происходит высвобождение гипофизотропных гормонов в кровь и их транспорт портальной системой к гипофизу. Концентрация гипофизотропных гормонов в этой системе наивысшая по сравнению с их содержанием в общем кровотоке.

Кортиколиберин. Кортитропин-рилизинг-фактор был первым из гипофизотропных гормонов, который был частично охарактеризован еще в 1955 г., однако лишь в 1983 г. W. Vale с сотрудниками представили полную химическую и клиническую его характеристику. Интересно, что для получения 1 мг этого гормона (такое количество необходимо для химической характеристики) исследователи фракционировали 500 тысяч гипоталамусов овцы. В последующие годы кортиколиберин был выделен и из гипоталамуса свиньи, крысы, человека и других животных. Этот пептид состоит из 41 аминокислотного остатка, имеющего молекулярную массу 4758, 14 дальтон. Ген, ответственный за синтез кортиколиберина, локализуется на 8-й хромосоме. Основное количество кортиколиберина локализуется в гипоталамусе, однако он выявляется и в других отделах ЦНС, включая кору головного мозга и различные ядра, где он выполняет роль нейротрансмиттера, координируя ответ на различные стрессовые ситуации. В гипоталамусе кортиколиберин в основнм выявляется в парвоцеллюлярных нейронах паравентрикулярного ядра и нервные аксоны этих нейронов достигают срединного возвышения, где они контактируют с капиллярами портальной системы и с током крови достигают клеток аденогипофиза. Многочисленными исследованиями показано, что адреналэктомия или гипофизэктомия приводит к увеличению содержания кортиколиберина в указанных областях гипоталамуса. Изучение структуры кортиколиберина, полученного из гипоталамуса различных животных, показало, что только кортиколиберин человека и крысы имеет идентичную структуру, которая включает следующую последовательность аминокислот: Ser-Glu-Glu-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-Phe-His-Leu-Leu-ArgGlu-Val-Leu-Glu-Met-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Gln-Ala-His-SerAsn-Arg-Lys-Leu-Met-Glu-Ile-Ile-NH2. Критическим для сохранения биологической активности гормона является наличие карбоксильного остатка. Исследованиями различных авторов установлено, что фрагмент молекулы, содержащий 15-41 аминокислотный остаток, обладает биологической активностью гормона. Как и другие нейропептиды, кортиколиберин синтезируется из прогормона, включающего 196 аминокислотных остатков. Период полураспада кортиколиберина в плазме составляет около 60 минут. Кортиколиберин селективно увеличивает высвобождение АКТГ и других гормонов, производных общего предшественника-проопиомелпнокортина (ПОМК) (см. ниже). Его влияние на усиление высвобождения АКТГ ингибируется глюкокортикоидами. При этом высокие дозы кортизола уменьшают и даже полностью прерывают его влияние на аденогипофиз. На мембранах кортикотрофов кортиколиберин комплексируется со специфическими высокоаффинными рецепторами, активирует аденилатциклазу, что приводит к повышению внутриклеточного уровня цАМФ, который в свою очередь повышает активность цАМФ-зависимых протеинкиназ. Стимуляция высвобождения АКТГ наблюдается только в присутствии Са2+. Наблюдаемое при этом увеличение уровня внутриклеточного кальция может быть результатом повышения концентрации внутриклеточного цАМФ с последующим фосфорилированием белков кальциевых каналов.

Вазопрессин также способен стимулировать высвобождение АКТГ, но для этого требуются дозы, превыщающие в тысячи раз дозы, оказывающие максимальный антидиуретический эффект. Вазопрессин и кортиколиберин оказывают синергическое влияние на секрецию АКТГ. Так, вазопрессин в 2-3 раза усиливает способность кортиколиберина высвобождать АКТГ (прямое потенцирующее действие). Проведенные исследования показали, что в нервных окончаниях срединного возвышения вазапрессин и кортиколиберин выявляются вместе, что свидетельствует о возможной их одновременной секреции при определенных условиях. Потенцирующее действие кортиколиберина на секрецию АКТГ помимо вазопрессина оказывают также адреналин и ангиотензин II. Как известно, вазопрессин осуществляет свое действие через инозитолфосфатную систему, а адреналин и ангиотензин II – через цАМФ. На мембранах клеток передней доли гипофиза выявлены высокоаффинные рецепторы к вазопрессину, которые фармакологически подразделяются на V2 (антидиуретические) и V1 (вазопрессорные) рецепторы.

Гипофизотропные нейроны, секретирующие кортиколиберин, локализуются в дугообразном, дорсомедиальном, вентромедиальном ядрах, но наибольшее их количество расположено в паравентрикулярном ядре. Аксоны этих клеток оканчиваются в области срединного возвышения, откуда через портальную систему гипофиза кортиколиберин достигает клеток аденогипофиза.Скорость биосинтеза и высвобождения кортиколиберина модулируется моноаминами. Так, адреналин, норадреналин, серотонин, ацетилхолин, глютамин, ангиотензин II, нейропептид Y и аспартамин стимулируют, а аргинин вазопрессин, g-аминомасляная кислота, вещество Р и опиоидные пептиды угнетают высвобождения кортиколиберина (схема 12). Кроме того, холецистокинин, гастринвысвобождающий пептид, предсердный натрийуретический гормон также способны стимулировать высвобождение АКТГ.


Схема 12. Контроль секреции и высво-бождение кортиколиберина.

КЛН – кортиколиберинсинтезирующий нейрон; 1 – серотонин; 2 – ацетилхолин; 3 – гамма-аминомаслянная кислота; 4 – норадреналин. Сплошные стрелки – стимулирующее влияние, пунктирные – угнетающее влияние на секрецию корти-колиберина.


Таким образом, кортиколиберин стимулирует синтез и высвобождение АКТГ посредством цАМФ и системы ФИФ2 (инозитолфосфатная система), являющейся вторичным мессенджером вазопрессина. Повышение концентрации калия деполяризует клеточную мембрану и в присутствии ионов кальция происходит высвобождение АКТГ. Это действие кортиколиберина не требует синтеза белка. Кроме того, кортиколиберин ускоряет биосинтез АКТГ de novo, и это влияние может быть угнетено пуромицином и актиномицином D.

Иммуннореактивный кортиколиберин и прокортикотропин-мессенджерная РНК (мРНК) выявляются и в различных органах, например, в мозговом слое надпочечника, печени, поджелудочной железе, спинном мозге, плаценте. Такой внегипоталамический “тканевой” кортиколиберин вызывает более продолжительное, чем гипофизотропный кортиколиберин, высвобождение АКТГ. Исследования показали, что у человека в период беременности уровень иммуннореактивного кортиколиберина увеличивается пропорционально сроку беременности, достигая его пика в период родов. После родов его содержание в крови быстро падает, достигая нормальных значений. Показано, что источником такого кортиколиберина является плацента и плацентарный кортиколиберин модулирует время наступления родовой деятельности посредством изменения чувствительности миометрия к окситоцину. Исследованиями Smith и соавт. (1993) показано, что при этом не происходит одновременного повышения концентрации АКТГ и кортизола в крови, полагая, что это является следствием десенситизации гипофиза. Работами Woods и соавт. (1994) установлено, что отсутствие эффекта от повышенной концентрации кортиколиберина в крови в период беременности связано с одновременным увеличением содержания кортиколиберин-связывающего белка в сыворотке крови. Разработанная ими специальная радиоиммунологическая методика для определения кортиколиберин-связывающего белка позволила не только изучить динамику его секреции в период беременности, но и доказать, что введение кортиколиберина добровольцам-мужчинам приводило к повышению на 46 ± 9% кортиколиберин-связывающего белка, что характерно для его уровня, наблюдаемого в конце беременности.

На функцию аденогипофиза оказывает влияние симпатическая нервная система. Принято считать, что это влияние осуществляется через гипоталамус. Как полагает Б.В. Алешин (1971), симпатическим импульсам свойственно хотя бы частично оказывать специфическое действие непосредственно на переднюю долю гипофиза.

Соматолиберин. Соматотропинвысвобождающий фактор был выделен из гипоталамуса еще в 1964 г. Однако его химическая структура была установлена лишь в 1980-е годы, когда вначале L. Frohman и соавт. (1981) частично охарактеризовали пептид, изолированный из внегипофизарных опухолей больных, страдающих акромегалией, и обладающий способностью усиливать высвобождение СТГ. Химическая структура соматолиберина была установлена R. Guillemin и соавт. (1981), когда из опухоли поджелудочной железы больного акромегалией был изолирован указанный полипептид. Эти данные были подтверждены J. Rivier и соавт. (1982), а сотрудниками этой же лаборатории была осуществлена экспрессия и клонирование кДНК, кодирующей синтез соматолиберина (Mayo R., 1983). Молекула соматолиберина включает 44 аминокислотных остатка, причем биологическую активность проявляет ее часть с первыми 29 аминокислотными остатками. Пептид с 27 аминокислотными остатками полностью лишен биологической активности. В сыворотке крови и тканях соматолиберин присутствует в различных молекулярных формах. В опухоли из клеток островков поджелудочной железы больных акромегалией обнаружены пептиды, состоящие из 44, 40 и 37 аминокислотных остатков. Ген, ответственный за синтез соматолиберина, локализуется на 20-й хромосоме. Следует указать, что вместо термина соматотропинвысвобождающий гормон или соматолиберин был предложен термин соматокринин, но этот термин в настоящее время практически не используется. У человека основной формой соматолиберина, содержащегося в сыворотке крови, является полипептид, состоящий из 40, а в гипоталамусе – из 44 аминокислотных остатков. Химическая структура молекулы включает следующую последовательность аминокислотных остатков: Tyr-Ala-Asp-Ala-Ile-Phe-Thr-AsnSer-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-AspIle-Met-Ser-Arg-Gln-Gln-Gly-Glu-Ser-Asn-Gln-Glu-Arg-Gly-Ala-Arg-AlaArg-Leu-NH2. Молекулярная масса соматолиберина-40 составляет 4544,73, а мол. м. соматолиберина-44 -5040, 4 Д. Синтетический соматолиберин у здоровых лиц селективно стимулирует секрецию СТГ, в то время как уровень инсулина, АКТГ, глюкагона и ряда других гормонов в крови при этом не изменяется.

Однократное введение соматолиберина приводит к более чем 20-кратному повышению содержания СТГ в крови, которое снижается до исходного уровня в течение 3 ч. Имеются сообщения, что при этом может незначительно изменяться уровень пролактина в крови. В случае инфузии соматолиберина в течение нескольких часов после характерного подъема уровня СТГ выявляется его последующее снижение, что подтверждает его пульсирующую секрецию на протяжении суток (L. Frohman и J. Jansson, 1986). Период полураспада соматолиберина в крови составляет около 7 мин.

Исследования показали, что соматолиберин синтезируется в дугообразном (аркуатном) и вентромедиальном ядрах гипоталамуса. Аксоны нейронов указанных ядер оканчиваются в области срединного возвышения. Высвобождение соматолиберина стимулируется серотонином и норадреналином.

Стимулирующее влияние лимбической системы на секрецию соматолиберина осуществляется через вентромедиальное ядро гипоталамуса. Связь этого ядра с внегипоталамическими областями в отличие от его связи с областью срединного возвышения является катехоламинергической. Эндорфины стимулируют секрецию СТГ, увеличивая образование соматолиберина. Блокада a-адренергических рецепторов гипоталамуса предупреждает повышение уровня СТГ в сыворотке крови здоровых людей в ответ на гипогликемию, в то время как блокада b-адренергических рецепторов повышает реакцию СТГ на гипогликемию. Механизмы контроля секреции и высвобождения соматолиберина представлены на схеме 13.


Схема 13. Контроль секреции и высво-бождение соматолиберина.

СЛН – соматолиберинпродуцирующий нейрон; 1 – серотонин; 2 – дофамин; 3 – альфа-адренергическое влияние норадреналина; 4 – бета-адренергическое влияние норадреналина. Сплошные стрелки – стимулирующее влияние, пунктирные – угнетающее влияние на секрецию соматолиберина.


Показано, что очищенные препараты соматолиберина, комплексируясь с рецепторами, расположенными на мембранах соматотрофов, стимулируют секрецию СТГ посредством активирования аденилатциклазы и повышения количества цАМФ. Наряду с этим активируется фосфатидилинозитоловая система с последующим повышением фосфорилирования различных ферментов гормоно-рецепторного комплекса. Это стимулирующее влияние соматолиберина блокируется соматостатином и усиливается глюкокортикоидами (W. Wehrenberg и соавт., 1983).

Соматолиберин широко применяется в клинической практике. Так, проба с внутривенным введением соматолиберина применяется для изучения секреции гормона роста. Чаще используют однократное введение соматолиберина в дозе 50, 100 или 200 мкг (из расчета 1 или 3,3 мкг на 1 кг массы тела). Содержание СТГ в сыворотке крови повышается с 0,7-2,0 до 20-30 нг/мл, а максимальных показателей достигает через 15-30 мин. Соматолиберин применяется и для лечения больных нанизмом, обусловленным первичным поражением гипоталамуса и нарушением вследствие этого секреции СТГ.

Соматостатин. При попытках выделить из гипоталамуса овец соматолиберин в лаборатории, руководимой Р. Гелемином, в 1973 г. был получен полипептид, который угнетал высвобождение гормона роста из культуры гипофиза крыс (P. Brazeau и соавт., 1973). В том же году была расшифрована структура соматостатина с такой последовательностью аминокислотных остатков: Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys. Таким образом, соматостатин является тетрадекапептидом, в 3-м и 14-м положениях содержит два цистеиновых остатка и существует в окисленной и восстановленной формах, причем каждая из них обладает одинаковой биологической активностью. Циклическая форма, по некоторым данным, оказывает более сильное ингибирующее действие на секрецию СТГ и инсулина.

L. Pradayrol и соавт. (1980) первыми показали, что в тканях соматостатин присутствует в нескольких формах и, в частности, в форме белка, химическая структура которого включает 28 аминокислотных остатков со следующей последовательностью: Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys. Молекулярная масса соматостатина-14 равна 1638, 12 D, а соматостатина-28 -3149 D (дальтон). Ген, ответственный за синтез соматостатина, локализуется на 3-й хромосоме.

Обе формы соматостатина являются биологически активными. Цитоиммунохимическими исследованиями показано, что соматостатин-14 выявляется в основном в ЦНС, тогда как соматостатин-28 – в желудочно-кишечном тракте, преимущественно в толстом кишечнике. При использовании иммунолюминесцентного метода было обнаружено, что соматостатин локализуется в нервных окончаниях наружного слоя срединного возвышения и в вентромедиальном ядре, которое считается основным гипоталамическим образованием, осуществляющим регуляцию секреции СТГ. Кроме того, соматостатин выявляется и в области дугообразного ядра, где он присутствует как в клетках и нервных окончаниях, так и в аксонах, проходящих через это ядро. Основные сплетения соматостатинсодержащих нервных волокон располагаются в вентромедиальном и дугообразном ядрах и далее распространяются каудально в вентральные сосцевидные ядра. Установлено также, что нейроны, секретирующие соматостатин, выявляются в паравентрикулярных ядрах. Аксоны этих клеток распространяются латерально и вентрально по направлению к перекресту зрительных нервов, а далее идут каудально к области срединного возвышения. Приведенные выше дугообразное и вентромедиальное ядра получают соматостатинсодержащие нервные волокна из других источников. В частности, нервные окончания, содержащие соматостатин, обнаружены в вентромедиально-дугообразном комплексе, супрахиазматических ядрах и в вентральных премамиллярных ядрах. Эти данные свидетельствуют о том, что соматостатин выполняет функцию не только гормона, но и нейропередатчика или нейромодулятора. Такая возможность подтверждается тем, что соматостатинсодержащие клетки обнаружены в спинальных ганглиях, а нервные волокна, содержащие соматостатин, выявляются в дорсальных рогах спинного мозга, периферических симпатических нейронах, превертебральных ганглиях, нижнем и верхнем мезентериальных узлах. В этой связи интерес представляют работы последних лет, в которых показано, что соматостатин вовлечен в такие важные функции мозга, как сознание, память, двигательная активность, вегетативная и эндокринная регуляция. M-F. Chesselet и соавт. (1995) показали, что соматостатин и его мРНК экспрессируются в полосатом теле мозга, которое вовлечено в двигательную активность и поведенческие реакции организма. Ишемия этих участков мозга увеличивает экспрессию гена соматостатина. И, наоборот, уровень соматостатиновой мРНК снижается после применения галоперидола, антипсихотических препаратов, которые способствуют развитию экстрапирамидных симптомов. Авторы справедливо считают, что выявляемая повышенная экспрессия гена соматостатина при патологических состояниях имеет прямое отношение к появлению при этом различных клиничесих симптомов. Кроме того, перерыв дофаминергической иннервации также приводит к повышению экспрессии гена соматостатина в этой области, что является дополнительным подтверждением участия соматостатина в нарушении двигательных реакций, столь характерных для болезни Паркинсона.

Соматостатин оказывает свое биологическое влияние через комплексирование с рецепторами, расположенными на мембранах клеток. В настоящее время различают 5 типов рецепторов к соматостатину, которые неодинаково экспрессируются как в тканях различных областей ЦНС, так и в периферических тканях. Все типы рецепторов экспрессируются в передней доле гипофиза и в гипоталамусе, что указывает на участие этих областей в модуляции секреции гормона роста. M. Berelovitz и соавт. (1995) показали, что сахарный диабет и депривация пищи приводят к уменьшению мРНК рецепторов к соматостатину 1, 2 и 3-го типа в гипофизе примерно на 80% по сравнению с контрольными животными, получающими нормальное питание. При этом количество мРНК рецепторов 4 и 5 типа остается без изменений. Также не изменяется количество мРНК всех видов рецепторов в гипоталамусе. В гипофизе диабетических крыс сниженное количество мРНК рецепторов 1, 2 и 3 типа на 50-80% по сравнению с контрольными животными восстанавливается при проведении инсулинотерапии, но только в отношении мРНК рецепторов 1 типа. Экспрессия мРНК рецепторов 4 типа в гипофизе и всех четырех типов в гипоталамусе при этом остается без изменений. Экспрессия же рецепторов 5 типа в гипофизе, сниженная при диабете на 70% и на 30%, в гмпоталамусе восстанавливается при введении инсулина. Эти исследования четко показывают взаимосвязь количества рецепторов к соматостатину с состоянием обмена веществ. Исходя из структуры и фармакологических свойств рецепторы к соматостатину разделяют на две группы (два семейства): к первой группе относятся рецепторы 2, 3 и 5-го типа, которые раньше по фармакологическим характеристикам относили к соматостатиновым рецепторам 1-го типа; ко второй группе относятся рецепторы 1-го и 4-го типа, ранее называемые соматостатиновыми рецепторами 2-го типа. Таким образом, исследования показали, что соматостатиновые рецепторы относятся к группе с 7 трансмембранными фрагментами и кодируются генами, расположенными на различных хромосомах. Ген рецептора 1-го типа локализуется на 14-й; 2-го типа-на 17-й; 3-го типа-на 22-й; 4-го типа-на 20-й и 5-го типа – на 16-й хромосоме. Рецепторы 1-4-го типа практически эквивалентно комплексируются с соматостатином -14 и 28, тогда как рецепторы 5-го типа почти селективно комплексируются с соматостатином, имеющим структуру, включающую 28 аминокислот. Установлена различная аффинность рецепторов к соматостатину и его аналогам. Так, аналог соматостатина октреотид (SMS 201-995) взаимодействует с рецепторами 2 и 3 типа, очень незначительно с рецепторами 5-го типа. Другой аналог соматостатина – соматулин (BIM 23014) комплексируется с рецепторами 2-го и 5-го типа и лишь незначительно с рецепторами 3-го типа.

Изучая экспрессию соматостатиновых рецепторов 1 и 2 типа в гипоталамусе, A. Beaudet и G. Tannenbaum (1995) установили различную их концентрацию в ядрах гипоталамуса (преоптическая область, супрахиазматическое ядро, дугообразное ядро, паравентрикулярное и перивентрикулярное ядро, вентральные премамиллярные ядра), что указывает на участие этих рецепторов в центральной регуляции секреции соматолиберина и соматостатина.

Механизмы передачи гормонального сигнала в соматостатиновых рецепторах интенсивно изучаются в последние годы. A. Schonbrunn и соавт. (1995) показали, что соматостатиновые рецепторы в экзокринной части поджелудочной железы осуществляют трансдукцию гормонального сигнала через активирование двух подтипов G-белка: Gia1 и Gia3. Соматостатиновые рецепторы экзокринной части поджелудочной железы относятся к соматостатиновым рецепторам 2-го типа, тогда как в гипофизарных клетках выявляются соматостатиновые рецепторы 1-го и 2-го типа. Взаимодействие соматостатина с клетками гипофиза ведет к увеличению количества соматостатиновых рецепторов независимо от количества вновь синтезированного белка.

Работы по идентификации соматостатиновых рецепторов в различных тканях организма неожиданно привели к разработке методов ранней диагностики опухолей, секретирующих различные гормоны. Так, S. Lamberts и соавт. (1995) показали, что рецепторы к соматостатину присутствуют в большинстве опухолей, секретирующих гормоны. Для визуализации рецепторов к соматостатину применяют октреотид, меченный радиоактивным индием. С помощью этого препарата визуализируются в 70-100% опухоли, секретирующие гормон роста, ТТГ, опухоли островков поджелудочной железы, карциноидные опухоли, параганглиомы, феохромоцитомы, медулярный рак щитовидной железы, мелкоклеточный рак легких. Кроме того, менингиомы, рак почек, рак молочной железы, злокачественные лимфомы часто имеют также рецепторы к соматостатину, что позволяет проводить их диагностику с помощью различных сканирующих процедур. Причем исследования, проведенные с использованием соматостатина-14, соматостатина-28 и октреотида, показали различия в количестве связывающих мест к перечисленным гормонам, что указывает на определенные различия в соматостатиновых рецепторах. Помимо этого, для выявления первичной опухоли или ее метастазов во время операции применяется октреотид (аналог соматостатина), меченный радиоактивным йодом.

Соматостатин оказывает прямое действие на ЦНС. Он вызывает различные поведенческие, двигательные и электрофизиологические изменения при введении его в гиппокамп, кору головного мозга.

Показано, что соматостатин выявляется в d-клетках желудочно-кишечного тракта и поджелудочной железы. В желудке эти клетки располагаются в собственном слое слизистой оболочки антрального отдела, преимущественно в непосредственной близости от клеток, продуцирующих гастрин, что подтверждает влияние соматостатина на секрецию этого гормона. В кишечнике a-клетки выявляются в основном в собственном слое слизистой оболочки; незначительное их количество обнаруживается в криптах. В поджелудочной железе соматостатинсодержащие клетки локализуются по периферии панкреатических островков, располагаясь между a- и b-клетками.

Категория: Статьи по эндокринологии | Добавил: admin (11.03.2008) | Автор: Профессор М.И. Балаболкин
Просмотров: 1576 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: